20 research outputs found

    On-line monitoring of electrolytes in hemodialysis: on the road towards individualizing treatment

    Get PDF
    Introduction: End-stage renal disease (ESRD) patients depend on dialysis for removal of toxic waste products, fluid overload relief and maintenance of electrolyte balance. Dialysis prolongs millions of lives. To some extent, ESRD has become a manageable disease with a steadily growing dialysis population of increasing average age and associated comorbidity. During 7 decades many technical refinements have been developed e.g. sodium profiling, blood volume, ultrafiltration variation based on blood pressure measurement, urea kinetics etc. Despite its large potentials, in-line electrolyte monitoring lags behind in dialysis treatment. Areas covered: In this paper, we review the state of technologies available for in-line monitoring of the electrolytes sodium, potassium and calcium during hemodialysis. Expert commentary: We concluded that individual optimization of dialysate composition should be able to improve hard medical outcomes, but practical clinical implementation stands/falls with reliable and affordable in-line ion-selective sensing technology. Optical ion-selective microsensors and microsystems form a promising pathway for individualizing the dialysis treatment

    Optimizing the image of fluorescence cholangiography using ICG:a systematic review and ex vivo experiments

    No full text
    BackgroundThough often only briefly described in the literature, there are clearly factors that have an influence on the fluorescence intensity, and thereby the usefulness of the technique. This article aims to provide an overview of the factors influencing the fluorescence intensity of fluorescence imaging with Indocyanine green, primarily focussed on NIRF guided cholangiography.MethodsA systematic search was conducted to gain an overview of currently used methods in NIRF imaging in laparoscopic cholecystectomies. Relevant literature was searched to gain advice on what methods to use. Ex vivo experiments were performed to assess various factors that influence fluorescence intensity and whether the found clinical advices can be confirmed.ResultsICG is currently the most widely applied fluorescent dye. Optimal ICG concentration lies between 0.00195 and 0.025mg/ml, and this dose should be given as early as achievablebut maximum 24hbefore surgery. When holding the laparoscope closer and perpendicular to the dye, the signal is most intense. In patients with a higher BMI and/or cholecystitis, fluorescence intensity is lower, but NIRF seems to be more helpful. There are differences between various marketed fluorescence systems. Also, no uniform method to assess fluorescence intensity is available yet.ConclusionsThis study identified and discussed several factors that influence the signal of fluorescence cholangiography. These factors should be taken into account when using NIRF cholangiography. Also, surgeons should be aware of new dyes and clinical systems, in order to benefit most from the potential of NIRF imaging.</p

    A direct phase-tracking doppler radar using wavelet independent component analysis for non-contact respiratory and heart rate monitoring

    No full text
    \u3cp\u3eA continuous wave Doppler radar, operating as a phase-locked-loop in phase demodulator configuration, is proposed and in vivo demonstrated for noncontact vital signs monitoring. The radar architecture exhibits a unique precision in tracking the phase modulation caused by human cardiopulmonary activity from which heartbeat and respiration can simultaneously be extracted. The single mixer architecture is immune to the null point and does not require small-angle approximation conditions, which distinguishes it from pre-existing other approaches. This enables the proposed radar to behave highly linear, with very precise detection of phase modulations induced by any kind of movement, independently from amplitude and speed. After simulations and technical tests to validate functionality and safety of the proposed architecture, a practical setup was demonstrated on human volunteers. Wavelet independent component analysis was applied to successfully retrieve respiratory and heart rate information from the radar baseband signal.\u3c/p\u3

    Wearable and implantable artificial kidney devices for end-stage kidney disease treatment : current status and review

    No full text
    Background: Chronic kidney disease (CKD) is a major cause of early death worldwide. By 2030, 14.5 million people will have end-stage kidney disease (ESKD, or CKD stage 5), yet only 5.4 million will receive kidney replacement therapy (KRT) due to economic, social, and political factors. Even for those who are offered KRT by various means of dialysis, the life expectancy remains far too low. Observation: Researchers from different fields of artificial organs collaborate to overcome the challenges of creating products such as Wearable and/or Implantable Artificial Kidneys capable of providing long-term effective physiologic kidney functions such as removal of uremic toxins, electrolyte homeostasis, and fluid regulation. A focus should be to develop easily accessible, safe, and inexpensive KRT options that enable a good quality of life and will also be available for patients in less-developed regions of the world. Conclusions: Hence, it is required to discuss some of the limits and burdens of transplantation and different techniques of dialysis, including those performed at home. Furthermore, hurdles must be considered and overcome to develop wearable and implantable artificial kidney devices that can help to improve the quality of life and life expectancy of patients with CKD
    corecore